Описане та вписане в трикутник коло

Коло називається описаним навколо трикутника, якщо всі вершини трикутника лежать на колі. Кажуть, що коло є описаним навколо трикутника.

Навколо будь-якого трикутника можна описати коло і лише одне. Центр кола, описаного навколо трикутника, є точкою перетину перпендикулярів, проведених через середини сторін трикутника, тобто точка перетину серединних перпендикулярів до сторін трикутника.

Зверніть увагу! Щоб знайти центр описаного кола, достатньо провести серединні перпендикуляри до двох сторін трикутника.

Щоб описати навколо трикутника коло, треба знайти центр кола і радіусом, що дорівнює відстані від центра кола до будь-якої вершини трикутника, побудувати коло.

Через будь-які три точки, що не лежать на одній прямій, можна провести коло і лише одне.
Центром кола, описаного навколо прямокутного трикутника, є середина його гіпотенузи, а радіус дорівнює її половині.
Якщо одна із сторін уписаного в коло трикутника дорівнює його діаметру, то цей трикутник прямокутний.

Коло називається вписаним у трикутник, якщо воно дотикається до всіх сторін трикутника. Сторони трикутника є дотичними до вписаного в нього кола.

У будь-який трикутник можна вписати коло і лише одне. Центр кола, вписаного в трикутник, є точкою перетину бісектрис трикутника.

Зверніть увагу! Щоб знайти центр уписаного кола, достатньо провести бісектриси двох кутів трикутника, оскільки всі три бісектриси трикутника перетинаються в одній точці.

Щоб вписати коло в трикутник, треба знайти центр кола й опустити з нього перпендикуляр на будь-яку сторону трикутника. Радіусом, що дорівнює довжині перпендикуляра, побудувати коло.

Діаметр кола, вписаного в прямокутний трикутник, дорівнює різниці суми катетів і гіпотенузи.
У рівностороннього трикутника центри вписаного й описаного кіл збігаються.
У рівнобедреного трикутника центри вписаного й описаного кіл лежать на медіані, проведеній до основи трикутника.

Матеріал з сайту: http://shkolyar.in.ua